设计应用

注意:宽泛负载!

发布日期:2013-08-05
</a></a>德州仪器" title="德州仪器">德州仪器(TI)高精度线性产品部的模拟应用工程师

在TI E2E 论坛上为客户提供支持时,我遇到的最常见的问题就是直流感应。直流感应方法很简单,就是安放一个与负载(分流电阻器)串联的电阻器,然后测量整个电阻器的电压(分流电压)。对于频程为 10 至 15 倍的负载电流而言,这种方法极为有效。

但是低功耗应用需要 30 倍乃至更高频程的电流感应解决方案。使用线性器件测量分流电压时,实现这种宽负载电流范围可能很困难。

放大器输出摆幅会限制可测量的负载电流范围。例如,从 100mV 至 4.9V 的输出摆幅相当于频程约 15 倍的线性输出范围。那么如果要测量 30 倍频程的负载电流,应该怎么做?调节增益!

图 1 所示的是两个增益如何能够增大可测量负载电流范围。

1

两个增益范围的电流感应

对数放大器和可编程增益放大器是一个选项,但如果需要测量的只是 20 至 30 倍频程的负载电流,就有点过度了。

另一种方法可使用带开关的运算放大器控制增益,如图 2 所示。

2

低侧运算放大器可调增益

如果分流电阻器与接地之间存在任何寄生阻抗,这就会产生不准确性。这是一个很大的弊端。图 3 所示的是当 Rg 涉及接地时,运算放大器可获得寄生电压 (VPAR)。

3

寄生电压误差,Rg=GND

要降低该误差,应将 Rg 连接至 Vpar(Kelvin 连接 Kevin-connection)。下图 4 所示为运算放大器不将增益应用于寄生电压,而其仍然出现在输出端。Vpar 随负载电流及 PCB 制造容差变化而变化。

4

寄生电压误差,Rg= Vpar

要消除该误差项,可使用只放大差分电压的器件,例如仪表放大器。

图 5 所示为 Kelvin 连接(Kevin-connected)至分流电阻器时,仪表放大器如何消除误差。图 5 中的方程式可简化为 Vout=Vref+Vshunt (注意 VPAR=0)。

5

无寄生误差的仪表放大器

许多系统设计人员需要单电源解决方案。传统仪表放大器不能满足该需求,因为它们具有有关输入共模电压、电源、参考电压以及增益的输出摆幅限制。

图 6 所示为 INA333 仪表放大器的这种关系。

6

INA333 单电源工作

例如,如果输出共模电压为 1V,输出摆幅则为 ~0V 至 ~2V。在低侧感应情况下,共模电源为 0V,因此输出摆幅极小,甚至没有摆幅。

为克服该问题,INA326 仪表放大器可使用独特的电流拓扑提供真正的轨至轨输入输出。

将 INA326 的独特性与控制其增益的开关相结合,可实现优异的单电源电流感应解决方案,其可检测达 30 倍频程的负载电流。

图 7 是实例设计的原理图。

7

10μA 至 10mA的单电源电流感应解决方案

图 7 所示的是用于 10μA-10mA 单电源电流感应解决方案的 TI 高精度设计。设计包括理论、计算与 TINA-TI 仿真

下次大家在设计电流感应解决方案时,务必要理解放大器的局限性。在尝试复杂解决方案之前,应明白简单开关可显著拓展范围!

 

作者:

Pete Semig 是一名德州仪器高精度线性产品部的模拟应用工程师,负责为德州仪器差分放大器及仪表放大器提供支持,专业从事电流感应工作。在 2007 年加入德州仪器之前,他毕业于密歇根州立大学,分别于 1998 年和 2001 年获电气工程士学位和电气工程硕士学位。2001 年至 2007 年,他曾任密歇根大学电气和计算机工程系教员,教授各类课程和实验课。Pete 曾多次获得学生评选的年度优秀教学质量奖。

此内容为AET网站原创,未经授权禁止转载。
放大器 德州仪器 产品 模拟 应用 工程师 电压 电流 功耗 解决方案 器件 如何 开关 2011 系统 设计 电源 仿真 德州仪器社区 TI社区 模拟设计 DSP
Baidu
map