基于深度学习的物联网入侵检测系统综述
网络安全与数据治理
周品希,沈岳,李伟
湖南农业大学信息与智能科学技术学院
摘要: 物联网中智能设备的互联互通在推动社会进步的同时,也因设备异构性、协议多样性和资源受限性导致安全威胁日益复杂化。传统入侵检测系统依赖特征匹配和规则定义,在面对新型攻击和动态攻击模式时表现出局限性。系统梳理了深度学习技术在物联网入侵检测系统中的应用进展,通过对比分析发现:基于深度学习的模型在检测精度和实时性上优于传统方法,在处理空间特征、捕捉时序依赖等方面表现突出;无监督学习和集成方法通过生成对抗样本、融合多模型优势,有效提升了小样本场景下的检测鲁棒性;当前研究仍面临数据标注成本高、边缘计算资源受限、动态攻击适应性不足等挑战。总结探讨了未来研究应聚焦轻量化、跨模态数据融合等方向,为构建高效、自适应的物联网安全防护体系提供理论支撑。
中图分类号:TP393.08文献标识码:ADOI:10.19358/j.issn.2097-1788.2025.06.001
引用格式:周品希,沈岳,李伟. 基于深度学习的物联网入侵检测系统综述[J].网络安全与数据治理,2025,44(6):1-10.
引用格式:周品希,沈岳,李伟. 基于深度学习的物联网入侵检测系统综述[J].网络安全与数据治理,2025,44(6):1-10.
A review of IoT intrusion detection systems based on deep learning
Zhou Pinxi,Shen Yue,Li Wei
College of Information and Intelligence, Hunan Agricultural University
Abstract: While the interconnection of smart devices in the Internet of Things promotes social progress, it also leads to increasingly complex security threats due to device heterogeneity, protocol diversity and resource constraints. Traditional intrusion detection systems rely on feature matching and rule definition, and show limitations when facing new attacks and dynamic attack patterns. This paper systematically sorts out the application progress of deep learning technology in the intrusion detection system of the Internet of Things. Through comparative analysis, it is found that the model based on deep learning is superior to traditional methods in detection accuracy and real-time performance, and has outstanding performance in processing spatial features and capturing temporal dependencies. Unsupervised learning and integration methods effectively improve the detection robustness in small sample scenarios by generating adversarial samples and integrating the advantages of multiple models. Current research still faces challenges such as high data annotation costs, limited edge computing resources, and insufficient adaptability to dynamic attacks. This paper summarizes and discusses the directions that future research should focus on, such as lightweight and cross-modal data fusion, to provide theoretical support for building an efficient and adaptive Internet of Things security protection system.
Key words : network security; Internet of Things; intrusion detection; deep learning
引言
物联网(Internet of Things, IoT)的快速发展正深刻地改变着人们的生活方式和社会的运行模式。目前,物联网应用已经覆盖了智能家居、医疗健康、工业控制、智慧农业等各个领域。然而,物联网设备的广泛部署和互联互通也带来了严重的安全隐患。由于物联网设备资源受限、异构性强、通信协议多样等原因,以往的网络安全防护手段难以适应这一复杂的环境,导致物联网系统频繁成为网络攻击的目标,严重威胁着个人隐私、企业利益及国家安全[1-2]。
入侵检测系统(Intrusion Detection System, IDS)凭借其能够实时监控网络流量,检测并响应异常行为,被广泛应用于物联网安全领域中。早期的IDS主要依赖于特征匹配[3]和规则定义[4],然而随着网络规模的大幅扩张以及网络处理节点数量的激增,重要数据在不同的网络节点之间生成和共享,同时旧攻击发生突变或产生大量新型攻击,数据传输量的剧增和攻击方式的多变使其检测效果满足不了当前需求。
近年来,随着深度学习在众多领域的广泛应用,研究人员探索了多种深度学习模型,以应对物联网环境中复杂多变的安全威胁。在物联网入侵检测中,深度学习可以从大量的网络流量和设备行为中挖掘隐蔽的模式,自动学习攻击特征,减少对人工规则的依赖。
本文详细内容请下载:
https://www.chinaaet.com/resource/share/2000006574
作者信息:
周品希,沈岳,李伟
(湖南农业大学信息与智能科学技术学院,湖南长沙410000)
此内容为AET网站原创,未经授权禁止转载。