kaiyun官方注册
您所在的位置:首页 > 可编程逻辑 > 设计应用 > 一种电缆终端头红外识别算法的FPGA实现研究
一种电缆终端头红外识别算法的FPGA实现研究
电子技术应用
吴卫堃1,郑耀华1,曾彦超1,曾祥伟1,巫志安1,李嘉成1,周骞2,袁超2
1.广东电网有限责任公司肇庆供电局;2.湖南大学 电气与信息工程学院
摘要: 针对在电站巡检中电缆终端头识别准确率低、实时性差等问题,设计一种基于粒子群算法(Particle Swarm Optimization,PSO)优化反向传播(Back Propagation,BP)神经网络的现场可编程门阵列(Field Programmable Gate Array,FPGA)红外识别系统。红外识别算法实现包括使用改进区域生长算法对红外图像进行分割,随后计算Hu不变矩作为神经网络输入特征。对于PSO-BP神经网络,选择7-10-1的网络结构,训练后均方误差为0.085,优于BP神经网络的0.136。在FPGA上实现时,采用定点数据量化、流水线结构及并行计算方法,同时对Sigmoid激活函数应用二次方程多段拟合。最终经过仿真验证,该系统识别率达到了92%并且算法速度提高了约6倍。
中图分类号:TN79 文献标志码:A DOI: 10.16157/j.issn.0258-7998.246172
中文引用格式: 吴卫堃,郑耀华,曾彦超,等. 一种电缆终端头红外识别算法的FPGA实现研究[J]. 电子技术应用,2025,51(7):95-100.
英文引用格式: Wu Weikun,Zheng Yaohua,Zeng Yanchao,et al. Research on FPGA implementation of an infrared identification algorithm for cable terminals[J]. Application of Electronic Technique,2025,51(7):95-100.
Research on FPGA implementation of an infrared identification algorithm for cable terminals
Wu Weikun1,Zheng Yaohua1,Zeng Yanchao1,Zeng Xiangwei1,Wu Zhian1,Li Jiacheng1,Zhou Qian2,Yuan Chao2
1.Zhaoqing Power Supply Bureau, Guangdong Power Grid Co., Ltd.;2.School of Electrical and Information Engineering, Hunan University
Abstract: To address the issues of low identification accuracy and poor real-time performance of cable terminal heads during power station inspections, a field programmable gate array (FPGA) infrared recognition system based on particle swarm optimization (PSO) to optimize back propagation (BP) neural networks has been designed. The infrared recognition algorithm includes the use of an improved region growing algorithm for segmenting infrared images, followed by the calculation of Hu invariant moments as input features for the neural network. For the PSO-BP neural network, a 7-10-1 network structure was chosen, achieving a mean squared error of 0.085 after training, which is better than the 0.136 of the BP neural network. When implemented on the FPGA, fixed-point data quantization, pipelined architecture, and parallel computing methods were employed, along with a piecewise quadratic fitting for the Sigmoid activation function. Ultimately, through simulation verification, the system achieved a recognition rate of 92% and improved the algorithm's speed by approximately six times.
Key words : FPGA;infrared image recognition algorithm;region growing method;Hu invariant moments;PSO-BP neural network

引言

电缆终端头是电力系统的重要组成部分,其运行状态影响电网安全。红外成像技术因其非接触性和穿透力强[1],在电缆终端头识别中得到广泛应用。然而,复杂背景使传统红外识别算法容易出现识别错误、实时性差等问题[2],从而导致其状态诊断结果无法及时匹配对应的设备类型,影响运行状态系统的正常运行。

近年来,神经网络在图像识别中广泛应用[3],能够在复杂环境中准确识别目标物体。将红外图像处理算法与神经网络结合是更优解。目前,电力巡检中常用的神经网络包括BP神经网络、卷积神经网络和生成对抗网络。然而,这些算法通常依赖计算机平台,难以满足电力巡检对便携性和实时性的要求,因此需要移植到嵌入式平台。考虑到嵌入式硬件资源,BP神经网络因其简洁结构和较低计算需求,更适合硬件部署,但其容易陷入局部最优,而PSO算法可以优化BP神经网络的初始权重和偏置,显著提升识别效果[4]。

在硬件设备的选择上相比于DSP+ARM架构,FPGA凭借其并行处理能力和高速计算优势[5],更适合进行电站中的数据处理[6],近年来已广泛应用于高速图像处理领域。

本文基于以上分析提出一种基于PSO-BP神经网络优化红外识别算法的FPGA系统,通过FPGA并行计算和流水线结构优化,实现电缆终端头红外图像的实时、准确识别。


本文详细内容请下载:

https://www.chinaaet.com/resource/share/2000006602


作者信息:

吴卫堃1,郑耀华1,曾彦超1,曾祥伟1,巫志安1,李嘉成1,周骞2,袁超2

(1.广东电网有限责任公司肇庆供电局,广东 肇庆526000;

2.湖南大学 电气与信息工程学院,湖南 长沙410000)


Magazine.Subscription.jpg

此内容为AET网站原创,未经授权禁止转载。