kaiyun官方注册
您所在的位置:首页 > 人工智能 > 设计应用 > 工业大模型赋能制造业数字化转型的路径与对策
工业大模型赋能制造业数字化转型的路径与对策
网络安全与数据治理
秦峥1,李育涛2,郭淑芳1
1.国家工业信息安全发展研究中心;2.中国科学院大学
摘要: 在全球制造业加速迈向数字化、智能化的背景下,工业大模型作为新一代智能技术,正成为推动制造业数字化转型的重要引擎。通过系统梳理工业大模型的概念、发展脉络和发展现状等基础理论,提出工业大模型赋能制造业数字化转型的理论框架,并详细阐述工业大模型在研发设计、生产制造、运维服务、经营管理和供应链管理等制造业典型应用场景的赋能作用。针对工业大模型在深度应用过程中所面临的高质量训练数据匮乏、工业场景分布碎片化、工业应用鲁棒性欠缺、关键场景风险需警惕和计算与系统能力不足等挑战,进一步探讨其赋能制造业数字化转型的方法路径,并从政策机制、示范引领、标准体系、自主创新、安全韧性和人才培养等多个维度提出对策建议,以期为工业大模型驱动制造业高质量发展提供有价值的参考和启示。
中图分类号:TP391.9文献标识码:ADOI:10.19358/j.issn.2097-1788.2025.07.006
引用格式:秦峥,李育涛,郭淑芳. 工业大模型赋能制造业数字化转型的路径与对策[J].网络安全与数据治理,2025,44(7):36-42.
The path and countermeasures of empowering manufacturing digital transformation with industrial large models
Qin Zheng1, Li Yutao2, Guo Shufang1
1.China Industrial Control Systems Cyber Emergency Response Team;2.University of Chinese Academy of Sciences
Abstract: Against the backdrop of the global manufacturing industry accelerating towards digitization and intelligence, industrial large models, as a new generation of intelligent technology, are becoming an important engine for promoting the digital transformation of the manufacturing industry. The concept, development context, and current status of the industrial large model are systematically reviewed, and a theoretical framework for empowering the digital transformation of the manufacturing industry with the industrial large model is proposed. The empowering role of the industrial large model in typical application scenarios of the manufacturing industry, such as research and development design, production and manufacturing, operation and maintenance services, business management, and supply chain management, is elaborated in detail. In response to the challenges faced by industrial large models in the process of deep application, such as the lack of high-quality training data, fragmented distribution of industrial scenarios, lack of robustness in industrial applications, vigilance against key scenario risks, and insufficient computing and system capabilities, this paper further explores the methods and paths to empower the digital transformation of the manufacturing industry, and proposes countermeasures and suggestions from multiple dimensions such as policy mechanisms, demonstration guidance, standard systems, independent innovation, safety resilience, and talent cultivation, in order to provide valuable reference and inspiration for industrial large models to drive the high-quality development of the manufacturing industry.
Key words : industrial large models; manufacturing; digital transformation; artificial intelligence

引言

当前,全球制造业正经历深刻的数字化与智能化变革[1],工业大模型作为人工智能技术与制造业深度融合的核心技术,正在以前所未有的深度和广度重塑产业链、供应链及价值链体系[2]。依托深度学习、自然语言处理与多模态感知等前沿技术,工业大模型具备强大的数据处理、知识推理与智能决策能力,能够打破数据孤岛,构建跨企业、跨环节、跨场景的智能协同体系。工业大模型强大的泛化能力与自主学习特性,显著提升制造企业的生产效率与资源配置效率,助力其实现高效化、柔性化转型,增强整体竞争力[3]。

尽管工业大模型在制造业的应用前景广阔,但其发展仍面临诸多挑战[4-5]。制造业数据高度异构、复杂多样,实现高效整合与智能应用仍存在技术瓶颈。模型的可解释性、安全性和适用性亦亟待提升,以确保其在实际生产环境中的稳定性与可控性。同时,从政策和产业生态的角度来看,当前工业大模型的标准体系不完善、产业链协同机制不健全,也制约了其规模化推广[6-8]。

基于此,本文聚焦工业大模型赋能制造业数字化转型的路径,构建理论分析框架,系统梳理其典型应用场景与关键痛点问题,深入探讨赋能机制与落地路径,提出推动其规模化应用的政策与技术举措。旨在为工业大模型在制造业中的有效落地提供理论支撑与实践参考,助力制造业向智能化、绿色化、高质量方向发展。


本文详细内容请下载:

https://www.chinaaet.com/resource/share/2000006612


作者信息:

秦峥1,李育涛2,郭淑芳1

(1.国家工业信息安全发展研究中心,北京100040;2.中国科学院大学,北京100049)


Magazine.Subscription.jpg

此内容为AET网站原创,未经授权禁止转载。